January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 3

BUILD YOUR OWN BASIC

by Dennis Allison & Others
{reprinted from People’s Computer Company Vol, 3, No.4)

A DO IT YOURSELF KIT FOR BASIC??

Yes, available fram PCC with this newspaper and a lot of your time. This is
the beginning of a series of articles in which we will work our way through the
design and implementation of a reasonable BASIC system for your brand X
computer. We'll be working on computers based on the INTEL 8008 and
8080 microprocessors. But it doesn't make much difference — if your machine
is the ZORT 9901 or ACME X you can still build a BASIC for it. But
remember, it's a hard job and will take lots of time particularly if you haven't
done it before. A good BASIC system could easily take one man six months!

We'd like everyone interested to participate in the design. While we could do
it alt curselves, {we have done it before} your ideas may be better than ours.
Maybe we can save you, or you can save us, a lot of work or problems. Write
us and we'll publish your letter and comments.

WHICH BASIC?

There is not any one standard BASIC {yet).

The question is which BASIC should we choose
to implement. A smaller {fewer statements,
fower features) BASIC is easier to implement
and (more important) takes less space in the
computer. Memory is still expensive 5o the
smaller the better. Yet maybe we can't give

up some goodies like string variables, dynamic
array allocation, and s¢ on.

There is a standard version of BASIC which is
to be the minimal language which can be called
BASIC. It's a pretty big lanquage with lots of
goodies. Maybe too big. Is there any advantage
to being compatible with, say, the EDU BASICS?
We don't have to make any decision yet; but the
time will come . ..

COMPILER OR INTERPRETER?

We favor using an interpreter. An interpreter is
a program which will execute the BASIC program
from its textual representation. The program -

DIRECT MODE?

DATA STRUCTURES

Data structures are places to put things so you can find them or use them later.
BASIC has at least three important ones: a symbol table which looks up a pro-
gram name, A or Z9 or A$, with its value. If we had a big computer where space
was not 2 huge problem, we could simply preallocate all storage since BASIC
provides for only 312 different names excluding arrays. When memory is so
costly this doesn't make much sense, Somewhere, also, we've got to store the
names which BASIC is going to need to know, names like LET and GO TO and
IF. This table gats pretty big when there are lots of statements.

Lastly, we need some information about what is a legal BASIC statement and
which erzor to report when it isn't. These tables are called parsing tables since
they control the decomposition of the program into its component parts.

STRATEGY

Divide and Conquer is the programmers maxim, BASIC will consist of alot of
smaller pieces which eommunicate with each other. These pieces themselves
consist of smaller pieces which themselves consist of smaller pieces, and so forth
down to the actual code, A large problem is made manageable by cutting it into
pieces.

What are the pieces, the building biocks of BASIC? We see a bunch of them:

#a supervisor which determines what is to be done next. It receives control
when BASIC is loaded.

% a program and line editor. This program collects lines as they are entered
from the keyboard and puts them into a part of computer memory for
later use,

%a line executor routine which executes a single BASIC statement, whatever
that is. . '

%a line sequence which determines which line is to be executed next. -

¥a floating point package to provide floating point on 2 machine without the
hardware. : X

sterminal [/O handler to input and output information from the Teletype and
pravide simple editing (backspace and line deletion).

%a function package to provide all the BASIC functions (RND, INT, TAB, etc.)

wan error handling routine (part of the supervisor).

#%a memory management program which provides dynamic allocation data
objects.

These are the major ones. As we get futher into the system we'll begin to see
others and we'll begin to be able to more fully define the function of each of
these modules.

TINY BASIC

Pretend you are 7 years old and don't care

vou write is the one which gets executed. A com-
piler converts the BASIC program into the ma-
chine code for the machine it is to run on. Com-

Some kind of “desk calculator mode of opera-
tion would be nice, At least, we would like to
be able to look at and set different variables in a

much about fioating point arithmetic {(what’s
that?), logarithms, sines, matrix inversion,
puclear reactor calculations and stuff lixe
that.

program and restart execution at any given point.
This feature makes it easier to find and gently
terminate the existence of "'bugs.”

piled code is a lot faster, but requires more space
and some kind of mass storage device {tape or
disk}. Interpretative BASIC is the most common
on smail machines.

And . . . your home computer is kinda small,
not too much memory. Maybe its a MARK-8
or an ALTAIR 8800 with less than 4K bytes
and a TV typewriter for input and output.

You would like to use it for homework, math
_tecreations and games like NUMBER, STARS,
TRAP, HURKLE, SNARK, BAGELS, ...

HOW MUCH MEMORY? AND .., WHAT KIND?

Can we make some guesses about how big the BASIC system will be? Only
if you don’t hold us to it. Suppose we wart to be able to run a 50 line
BASIC program. We need about 800 bytes to store-the program, another
€0 or so bytes for storing program values {all numeric) without leaving any
space for the interpreter and its special data. Past experience has shown
that something tike 6 to 8 Kbytes are needed for a minimum BASIC inter-
preter and that at least 12K bytes are necessary for a comfortable system.
‘That’s a lot of memory, but net too much more than you need to run the

Consider then, TINY BASIC

» [nteger arithmetic only — 8 bits? 16 bits?
» 26 variables: A,B,C,D,.... 2

a The RND function — of course!

a Seven BASIC statement types

assembler. A lot of BASIC could be put into ROM (Read Only Memory) INPUT
once developed and checked out, ROM is a lot cheaper than RAM (Read PRINT
and Write) memoary, but you can't change it. It's lots better to make sure LET
everything works first. ﬁ?o TO
But . . . if we can agree on some chunks of code and get it properly checked GOSUB
out, some enterprising person out thers might make a few thousand ROMs RETURN

and save us all some $$%. Let's see now . . . how about ROMs for floating w Strings? OK in PRINT staternents, not
point arithmetic, integer arithmetic, Teletype I/O . ..)) '

QK otherwige.

January 1976 Tiny BASIC Calisthenic

s & Orthodontia Box 310, Menlo Park CA 94025 Page 4

BUILD YOUR OWN BASIC-REVIVED
(reprinted from People’s Computer Company Vol. 4, No. 1)
WHAT IS TINY BASIC?"?

TINY BASIC is a very simplified form of BASIC which can be
implemented easily on a microcomputer. Some of its features are:

Integer arithmetic 16 bits only
26 variables (A, B, .. ., Z)

Seven BASIC statements

INPUT PRINT LET
IF GOSUB RETURN

GOTO

-

uch memory)

Strings only in PRINT statements
Only 256 line programs (if you've got that m
Only a few functions including RND

It's not really BASIC but it looks and acts a lot like it. T'll be good
to play with on your ALTAIR or whatever; better, you can change
it to match your requirements and needs.

TINY BASIC LIVES!!

We are working on a version of TINY B
80%0. It will be an interpretive system designed to be as conservative
of memory as possible. The interpreter will be programmed in
assembly language, but we’ll try to provide adequate descriptions

of our intent to aliow the same system
other machine. The next issue of PCC will
to this project.

ASIC to run on the INTEL

devote a number of pages

_ 3 In the mean

Compiter Construction For
493 pages, $14.93

Theory & Application of a Bottom- Up Syntax Directed Tronslator
Harvey Abramson, Academic Press, 1973, 160 pages, $11.00

Compiling Techniques, F.R.A. Hopgood, American Else
$6.50

A BASIC Language Interpreter for the Intel 8008 Microprocessor
A.C. Weaver, M.H. Tindall, R.L. Danielson. University of llinais
Computer Seience Dept, Urbana IL 61801. June 1974. Report No.
4

VIUCDCS-R-74-658. Distributed by National Technical Informa-
sion Service, 1.8, Commerce Dept, Springfield VA 22151, §4.25.

time, read one of these.

Digital Computers, Dayid Gries, Witey, 1971

vier, 126 pages

A BASIC language interpreter has been designed for useina
microprocessor environment. This report discusses the develop-
ment of 1) an elaborate text editor and 2} a table-drviven interpre-
ter. The entire system, including text editor, interpreter, user
text buffer, and full floating point arithmetic routines fits in

16K 8-bit words.

The TINY BASIC proposal for small home computers
was of greal interest Lo me. The tack of floating point
arithmetic however, tends to limit its usefulness for my
objectives.

As a matter of a suggestion, consideration should be
given to the optional inclusion of ffoating point
arithmetic, logarithm and trigonmetric calculation
capability via a seientific calculator chip interface.t

The inclusion of such an option would tend to extend -

to be programmed for most any

the imterpreter to users who desire these complex caleu
lation capabilities. A number of caleulator chip
proposals have been made, with the Suding unit being
of the most interest.

Thank you for the note of 13 Junie, regarding my lotter
on the Tiny BASIC article (PCC Vol. 3 No. 4). Tt was
with regret that learned that the series was not con-
tinued in the next volume, Even thoagh few responded
to the article published, conceptually the knowledge
and principles which would be disseminated regarding
a limited lexicon, high level programming language

are of importance to the independent avocational
microcomputer community.

At this time, PCC may not have a wide distribution in
the avocation microcomputer community. This could
be possibly the eause for the low number of respondies.
Never the less, this should not detract from the dis-
‘semination and importance of concepts and principles
which are of significance.

The thrust of my letter of
4 mechanism for the inclusion of F.P. in a limited
Jexicon and memory consumptive BASIC. 1 hope that
the implication that F.P. must be included was not
read into my letter.

15 April, 1975, was to suggest

Tt is my interest that information, concepts and the
principlcs of compilerf' terpreter construction as it

n
related to microcompulers be available to the Jimited
budget avocational user. The

MITS BASIC, which yoo
brought up, appears from my viewpoint to be a licensed,
blackbox program which is not currently available to:
(a) 8008 users, (b) IMP-16 users, {¢) independent 3080
users (exeept at a very large expense) or (d) MC6800

users who will shortly he on line.

Presently it appears that microcamputer compiler
interpretor function langauges wilt be coming available
from a number of sources (MITS, NITS, Processor)
Technology and ete.). However, few will probably deal
in the conceplualizalions which are the basis of the
mterpreter. Information which will fill the void in the
intefpreter construction knowledge held by the avocation
builder, should be made available.

1 strongly urge that the series started with Vol. 3

No. 4 article be continued. Passibly the hardware,
peripheral, machine programming difficuities incarred
by the microcomputer builder, is prohibiting a major
contribution at this time. However, 1 would expect
that by Autumn a number of builders should have.
their construction and peripheral difficulties far enough
along to start thinking about higher level languages.

The previous objective for the article series sounds
reasonable. It was'not my purpose in subrmitting the
Jetter to detract from the objective of & very limited

geithe PCC to
_ ies which have
regard to: avoeational
1 Christoffer

lexicon BASIC, ie., to be attractive and‘usable by the
young and beginner due to its simplicity. ¢ =

If wives, children, neighbors OF. Anyo who ignot
machine language or progr_a'mmi'rtg_i_j tedis expected
1o use a home-base unit creatéd under ‘éstrained
hudget a high level langaage willbe a necessity.. It

is with this foresight that I eneour thie continuance
of the “Build Your QwnBASIG se i
This issue aside, I would like:fo

continue the quite creditable a

been its order of busin

computing. G

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

Page 5.

DESIGN NOTES FOR TINY BASIC

1 by Dennis Allison, happy Lady, & friends
(reprinted from People’s Computer Company Vol. 4, No. 2)

SOME MOTIVATIONS

A {ot of people have just gotten into having
their own computer. Often they don't know too
much about software and particularly systems
software, but would like to be able to program in
something other than machine language. The
TINY BASIC project is aimed at you if you are
one of these people, Our goals are very limited—
10 provide a minimal BASIC-like language for
writing simple programs. Later we may make
it more complicated, but now the name of the
game is keep it simple. That translates to a
limited language (no floating point, no sines
and cosines, no arrays, etc.) and even this is
a pretty difficult undertaking.

Originally we had planned to limit
ourselves to the BOBO, but with a variety of
new machines appearing at very low prices, we
have decided to try to make a portable TINY
3IASIC system even at the cost of some effi-
ciency. Most of the language processor will be
written in a pseudo language which is good for
writing interpreters like TINY BASIC. This
pseudo language {which interprets TINY BASIC)
will then itself be implemented interpretively.
To implement TINY BASIC on a new machine,
one simply writes a simple interpreter for this
pseudo language and not a whole interpreter for
TINY BASIC.

We'd like this to be a participatory design
project. This sequence of design notes follows the
project which we are doing here at PCC. There may
well be errors in content and concept. If you're
making a BASIC along with us, we'd appreciate
your help and your corrections,

Incidentally, were we building a production
interpreter or compiler, we would probably struc-
ture the whole system quite differently. We chose
this scheme because it is easy for people to change
without access to specialized tools like parser
generator programs.

THE TINY BASIC LANGUAGE

There isn"t much to it. TINY BASIC
looks like BASIC but all variables are integers
There are no functions yet (we plan to add RND,
TAB, and some others later). Statement numbers
must be between 1 and 255 50 we can store them
in a single byte. LIST only works on the whole
program. There is no FOR-NEXT statement, We've
tried to simplify the language to the point where it
will fit into a very small memory so impecunious.
tyros can use the system,

The boxes shown define the language. The

quide gives a quick reference to what we will include.

The formal grammar defines exactly what is a legal
TINY BASIC statement. The gramemar is important
because our interpreter design will be based upon it.

IT'S ALL DONE WiTH MIRRORS———-
OR HOW TINY BASIC WORKS

Al the variables in TINY BASIC: the
control information as to which statement is
presently being executed and how the next state-
ment is to be found, the returnaddressesof active
GOSUBS—--all this information constitutes the
state of the TINY BASIC interpreter,

There are several procedures which act upon
this state. One procedure knows how to execute
any TINY BASIC statement. Given the starting
point in memory of a TINY BASIC statement, it
will execute it changing the state of the machine
as required. For example,

100 LET S= A+6 @
would change the value of S to the sum of the con-
tents of the variable A and the interger 6, and sets
the next line counter to whatever line follows 100,
if the line exists.

A second procedure really controls the
interpretation process by telling the fine interpreter
what to do, When TINY 8ASIC is loaded, this
control routine performs some initialization, and
then attempts to read line of information from the
consale. The characters typed in are saved in a buffer,
LBUF. it first checks to see if there is a leading
line number. |f there is, it incorporates the line
into the program by first deleting the line with the
same lina number {if it is present) then inserting
the new line if it is of nonzero length, H there is
no line number prasent, it attempts to execute
the line directly. With this strategy, all possible
commands, éven LIST and CLEAR and RUN are
possible insida programs. .Suicidal' programs are
also certainly possible.

TINY BASIC GRAMMAR

The things in beld face stand for themseives. The names in lower case
represent classes of things. ‘::="is read ‘is defined as’. The asterisk denotes
zero or more occurances of the abject to its immediate left. Parenthesis
group objects, € is the empty set. | denotes the alternative {the
exclusive-or).

line::= number statement € | statement ©
statement::= PRINT expr-list
IF expression relop expression. THEN statement
GOTO expression
INPUT var-list
LET var = expression
GOSUB expression
RETURN
CLEAR
LIST
RUN
END
expr-list: = (string | expression) {, {string | expression) *)
var-list::= var {, var}* .
expression::= (41 —{€} term { (& =) term}”
term: := factor { {* { /) factor)”
factar::= var | number | {expression}
va:=A B IC ...|YIZ
number::= digit digit*
digit::= 0| 1(2]... 1819
relop::=¢ (> =18} | >(<i=l€} =
A BREAK from the console will interrupt execution of the program.

January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310

'MPLEMENTATION STRATGIES AND ONIONS

When you write a program in TINY BASIC
there is an abstract maching which is necessary to
execute it. If you had a corapiler it woultd make
in the machine language of your computer a
program which emulates that abstract machine
for your program, An i mterpraear impiements
the abstract machine for the entire language and
rather than translating the pmgmm once to machine
code it transates it dvnamlcai ty as needed. Inter-
preters are programs and as such have their's as
abstract machines. One can find a better instruc-
tion set than that of any general purpose computer
for writing a particular inferpreter.. Then one
can write an interpreter 10 interpret the instruc-
tions of the interpreter which is interpreting the
TINY BASIC program. And if your machine is
microprogrammed {like PACE}), the machine
which is interpreting the interpreter interpreting
the interpreter interpreting BASIC is in fact
interpreted.

This multilayered, ‘onion-like approach
gains two things: ‘the interpreter for the inter-
preter is smaller and simpler to write than an
interpreter for ail of TINY BASIC, so the resul-
tant system is fairly portable. Secondly, since
the major part of the TINY BASIC is programmed
in a highly memory efficient, tailored instruction
set, the interpreted TINY BASIC will be smaller
than direct coding would allow. The cost isin
execution speed, hut there is not such a thing as
a free lunch, '

your machine
your program in TINY BASIC
finterpreter for TINY BASIC

interpreter for TINY BASIC's interpreter

: The TINY BASIC program is stored except -
for line numbers; |ust a5 it is entered from the
consobe, in some BASIC interpreters; the program :
is translated into an intermediate form which’ speeds
execution and saves space. Inthe TINY BASIC- : . -
environment, the code necessary to provide the

_matches the BASIC line, advance the cursor over
© - the matched string and execute the next IL. in-

QoicE REPE&ENGE__H

LINE FORMAT AND EDITi'Ni;,

e Lines without numbers executed
e Lines with numbers appended to
@ Line numbers must be { to 255
o Line number alone {empty hine) delet

@ Blanks are not significant, but key wor
contain no unneeded blanks

@ "’ deletes last character
@ X© deletes the entire line

EXECUTION CONTROL

=LAl A ST~ A

CLEAR deletg all lines and data
RUN run program
LIST fist program

EXPRESSIONS

Operators
Arithmetic Relational
+ - > 2=
r L L=
= O
Vanab[es
..... Z (26 only)
All arithmetic is modulo 215
{+ 32752}
INPUT / OUTP_Q_T 7
PRINT X,Y.Z
PRINT ‘A STRING'
PRINT 'THE ANSWER I%
INPUT X
INPUT X.¥.2
ASSIGNMENT STATEMENT
LET X=3
LET X=-3+5.Y
CONTROL STATEMENTS
GOTO X+10
GOTO 35
GOSUB X+35
GOSUS 50
RETURN

IF X >Y THEN GOTQ 30

transformation would easily exceed the space saved.

When a line is read in from the console device,
it is saved in a 72-byte array called LBUF (Line
BUFfer). At the same time, a pointer, CP, is
maintained to indicate the next available space in
LBUF. Indexing is, of course, from zero.

Delete the lesding'blanks. If the string

struction. |f the match fails, continue at the IL
instruction labeled Ibl.

10

fanuary 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 7

The TINY BASIC program is stored as an
array called PGM in order of increasing line num-
bers. A pointer, PGP, indicates the first free place
in the array. PGP=0 indicates an emply program,
PGP must be less than the dimension of the array
PGM. The PGM array must be reorganized when
new lines are added, lines replaced, or lines are
deleted.

Insertion and defetion are carried on simul-
taneously. When a new line is to be entered, the
PGM array searches for a qu’e with a line number
greater than or equal to that of the new line.
Notice that lines begin at PGM (0) and at PGM

{}+1} for every j such that PGM (j}=[carriage
return}. If the line numbers are equal, then the
length of the existing line is computed. A space
equal to the length of the new line is created by
moving alt fires with line numbers greater than
that of the line being inserted up or down as
appropriate. The empty line is handled as a
special case in that no insertion is made.

TINY BASIC AS STORED IN MEMORY

«# memory treated as an integer

| byte treated as a character
PRI NT.L"P

NTuN*N)N'ﬁN*N
N <> FoTRENWGDOD
1 PRYWEND

&

S“ @"g‘N'P uTmN@'aprI
F

1

a carriage return symbol
ERRORS AND ERROR RECOVERY

There are two places that errors can occur.

If they occur in the TINY BASIC system, they
must be captured and action taken to preserve
the system. tf the error occurs in the TINY
BASIC program entered by the user, the system
should report the error and allow the user to
fix_his problem. An error in TINY BASIC can
result from a badly formed statement, an il
legal action (attempt to divide by zero, for ex-
amplel, or the exhaustion of some resource
such as memory space. In any case, the de-
sired response is some kind of error message.
We plan to provide a message of the form:

! mmm AT nnn
where mmm is the error number and nnn is
the line number at which it occurs. For direct
statements, the form will be:

' mmm
since there is no line number,

Some error indications we know we will need are:

1 Syntax error

free space /

5 RETURN without GOSUB

o E

@'y 1
T O s

Two different things are going on at the same
time. The routines must determine if the TINY
BASIC line is a iegal one and determine fts form
according to the grammar; secondly, it must
call appropriate action routines to execute the
line. Consider the TINY BASIC statement:
GOT0 100
At the start of the line, the interpreter looks for
BASIC key words ({LET, GO, IF, RETURN, etc.}
In this case, it finds GO, and then finds TO. 8y
this time it knows that it has found a GOTO
statement. It then calls the routine EXPR to
obtain the destination line number of the GOTO.
The expression routine calls a whole bunch of
other routines, eventually leaving the number 100
(the vatue of the expression} in a speciat place, the
top of the arithmetic expression stack. Since
everything is legal, the XFER operator is invoked
1o arrange for the execution of line 100 (if it
exists) as the next line to be executed,

Each TINY BASIC statement is handled
similarly. Some procedural section of an iL
program corresponds to tests for the statement
structure and acts to execute the statement.

ENCODING

There are a number of different considerations
in the TINY BASIHC design which fall in this general
category. The problem is to make efficient use of
the bits available to store information without
loosing out by requiring a too complex decoding
scheme. o

tn a number of places we have to indicate
the end of a string of characters {or else we have
to provide for its length somewhere). Commonly,
one uses a special character (NUL = 00H for ex-
ample) to indicate the end. This costs one byte
per string but is easy to check. A better way de-
pends upon the fact that ASCII code does not
use the high order bit; normally it is used for parity

ONE POTENTIAL iL ENCODING

NN

~g—==||_ instruction byte

el 3

o
AN

subroutine call

7

£

7 6
PC +a gives
new 1L addrass

PC stacked

2 Missing line 6 Expression too complex
3 Line number too farge 7 Too many lines

|17/

4 Too many GOSUBs 8 Division by zero

THE BASIC LINE EXECUTOR

The execution routine is written in the inter-
pretive lapguage, IL. 1t consists of a sequence of
instructions which may call subroutines written
in IL, or invoke special instructions which are
really subroutines written in machine language.

1|77
0

7 6 1

TST with fail
address PC +«

table of entry
paints for ML subs,

S "7
0

PC + o gives new
{L. address. Current

0

fanuary 1976 Tiny BASIC Cahsthemcs & Orthodontl Box 310, Menlo Park CA 94025 Page 8

on transmission. We can use it to indicate the end ASTAYEMENT axscmonwmm L
{that is, last character} of a string. When we process oy :
i w Lperators TST, 151 rid P
the characters we must AND the character with g #rurtor tn fd Crarstorinis e viney
ki f ASIC fine, Oy oprativns INXT; XPER)
{7FH to scrub off the flag bit. e cutsos so it point ta xhatver FIRY nulg"m
. . THE R
The interpreter opcedes can be encoded into eonTRoL stemgy
. START, | Ly
asingle byte. Operations fatl into two distinct MLE S AL R
€ d co: GETNE
classes—those which call machine language sub- . s xe¢ Esteonnng :35;&“"
routines, and those which either call or transfer awr: dmy WSERT IT IMAY BE DELETES. -
ey N . PR : JINITIALY :
within the IL language itself. The diagram indi- AL1ZE FOR ExtcuTion
. - STATEMENT EXECUTOR : ; :
cates one encoding scheme. The CALL operations R R
N R . ST 1T - : ; N
have been subsumed into the IL instruction set, e Hieal SR AT
N " a 1
Addressing is shown to be refative to PC for IL bowe EPGET £ KRG IF S
. A . STORE
operations. Given the current 1L program size,) D B e NEE TONEXT,
A P st 614 53,60 -
this seems adequate. H it is not, the address n o ste LT o e
N . 1GE
could be used to index an array with the ML Cony Tm JERnon IF e
N N ' XPER ST P AND
class instructions. s2: ST S suge LRRORIF RO MATEH,
CALL EXPR SGET DISTINATION.
- § DORE : JF £ NOT NEXT.
TINY SASIC INVERPRETIVE QPLRATIONS v I SAVE HETURN LINE.
S AND JUMP.
TST DL, "steing” defete teading hlanks 4 st SBPAINT ;PAINF.
H sriing m s thy BASIC line, alvanca cursor over The 5% . :,S.é skl f;‘l]ﬂ;g“n?"ug“'
matched string and execuie the next IL instruction. 1T a 55: TET 58’ *1S THIAE MORE? -
match faids, execste the BL instraction ot 1he labeled Ll S s f,"[';ci;%’g\’éllm"ﬁ-
i 56: OUNE :ND, ENAOA 3F NOer.
CALL It Exccuie the b sebioutine startsng at 1bl. Seve the 1L 3d- N MLINE
fulltwing the ha I stack. NET
dress fullowing the CALL on the control stack. 57 EALL ExPn ,G" EXFR VALUE,
RTN Return to 1he EL focation specified @iy the top of the con- rf:g £s :15 Htini MOREY
trof stack, = T5Y 55, "1F IF STATEMLNT,
: caLL ExPn LGET § xPRFSHION,
DONE Report a syntax ercor if alter defetion leading blaaks the :;::I':I[si:;l?’ _2::2‘;?2:‘;30?\.‘“0 FuT ON STIC ‘
curser is not positioned 10 read a cacrige b, cuPR ;FLH | ON3 COWPARISON-PERFORMS NEXTF IF FALSE, |
P STMT 16ETNLAT STATEMENT.
IVP it Continua execution of 1L at the labet speciied. é?:,: éf\h 32&"""”1- EJ:[UJ:,:TDE,:::':‘SL
IRNUM TMOVE RUMBEH FROM TTY TQ AESTE.’
PRS Print characters feom the BASIC text up 10 but not inckeding the SIORE = iSTOHE IT.
closing quete mark. 1§ acr is foun.] in the program texd, reaerl an 3,3; g:;' " U8 E'Ens MehE?
ercar. Move the cussor to the point fullowng Lhe closing quote, 51 DONE <mugr HE rr.
512 :«;TY 13, RETURN :SEDUENCE TO NEXT.
3 i i e : N INET T .
PRN :’ir[::ts:‘:tr:ber ohtained by popping the top of the expres- DoNE :Mzs“":l': ;“E“E'"
- ASTR :MCSTORE LINE NUMTER OF CALL.{
HXT :SEQULHCE TONEXT STATEMENT.
PG inserl spaces 1a move the print head 1o next zone. 13 LSJ 514, "END
NLINE QOutput CHLF to Printer. S [T)gw 515, "LIST' 1 LIST COMMAND,
LST
NXT 1 the presemt wode is direct {line aumber rea), then . NXT 5
resura 1o line collection, Othereise, select the next Si5: BT RN oRuN ComMana.
sequential line and egn interpwetation, TexT
s18: 157 512, 'CLEAR® JCLEAR COMMAND.
XFER Test valuy&t the top of the AR 21k to be within tange. JM;“STAM’
I na, - s, SlEsT Lo posiion cursos
8T thet e, 113 exasts, tvgen interpretation there; i not 517 €RA :SYNTAX EARON.
repurt an eiror.
EXPR: TST 0, M
cALL TEA
SAV Ploce: present fae aumber on SBRSTK. Report overflow NEG [ron LAY~
reror, Juip £1 Nr_rnve IT.
£0: ;f:ﬁf 52”"' 1LOOK FON MORE,
RSTR Aeptoce current ling numbor with value on SBRSTE, 11 £1; 15} - £2.4 i{ii{,fﬁé‘,";{ﬁ,“' -
stuck 15 ermply, sunor enar. CALL TEAM ISsMTERM,
ADD
CMPR Compare AESTKISPY, the tup of the stack, with - T B J
ALSIKISP-Z) s per the celatinn sochicatmd by AESTK(SP 1), " caLL TEAM ~n|r$gnsuc£ TEAM.
Delete all foom stack, §F condibien specilisd did not match, suUR N
. aw 3
then perlermNXT action, £3:72 RIN ZANY MORE?
INNUM Read a sumbier dram the termirat 2nd push its vaiua onto
Read » o TERM: CALL FACGT
fIN Return 10 the fine colloct routi 7o o A0
veine colloct routine. CALL FACT ;PRODUCT FACTOR.
EAR Report syntax errer and retunn to line collect routine. JM{\:: To
ADD Replace top twe elements of AESTX by thew sum, T1: 5T T2,/ 1 ANY MORE?
suB Feplace ton two elements of AESTK by their difference, g’lq\lf_l- FACT M QUOTIENT FACTOR‘
NEG Aeplace lop of AESTK with its neqativa, JMP TO
MuUL Teplace 10p two elements of ACSTK by their preduct, FO
FACT: TSTV sVARIABLE.
DIV Reploca 1op two elements of AL ST K by their quoticnt, IND : YES, GET THE VALUE.{
STORE Plarc the value at the top of the AESTK into the variable RTN
designitest by the index specifid by the volus imescciately FO: TSTN F1 T SNUMBER, GET (TS VALUE,
below i1, fvlete both fram 1w srack, RTN
TSTV Il Tesk far wattile fi.e better) $f preseat., Place its ingfes Fi: TST F2,{" PARENTHESIZED EXPR.
valie onta the ALSTEK and conlinue execui.on al next CALL EXPR
suipested lecstion, Otherwise, continue at o, T5T F2 'y y
. i MATCHING PARENTHESIS.
TSTN ihl Test far number, If prasent, place its valug onto the ATN
SEST K and continue skecution 81 naxt suggested lacation. F2: ERR ; ERRCR.
thenwise, cantinue at],
1ND Aeplaca top of stack by variahle vahze if indexes. RELOP: TST
LST 44 Uhe contents of the progam area. LIT =
INIT PerFarmas gtobal initialization . RTN
Clears preigram area, emptys GOSUA stack, ste. RO: 57
T8T
GETLINE Input 4 line 1o LAUF. LIT 4= R4: TST §17,°3"
it
T5TL i) After editing Pearting blanks, lock lor # line numbear, Report error +f RTN TsT RE&=
Invalid; ranster to 0 if nat preseac R1: 78T LIT 5 I} =
. LiT 3 ; RTN
INSAT ::Lmt‘Jrlne after deleting eny line with same fine ATN ' (> f!5: TST RE, (
A3: LT 1 i LT3 HES]
XINIT Petform initiakration fos sach stated execution, RTN RE: LiT 4 3
Empties AEXP stack. RTN

12

